All About Jazz: The web's most comprehensive jazz resource

Serving jazz worldwide since 1995
All About Jazz: The web's most comprehensive jazz resource

What is Jazz?

Jazz Cosmos: Music and Modern Physics

By Published: November 19, 2013
Finally, Einstein's famous formula, E=mc2 in which energy and matter become interchangeable, is mirrored in the changes in sonority permitted by jazz. Sound is the matter or substance of music. It's what you hear, the presence, the object of musical expression, just as what you see is matter (you can't "see" energy; only the motion of matter). The jazz player constricts or, conversely, expands the sound of matter, his instrument, to achieve an effect. In so doing, he converts the sound "matter" into the "energy" of change. Sometimes he uses devices like a plunger mute, or growls and cat-calls, to achieve a more extreme effect. The physical energy emitted by the instrument actually changes: scientists call this the "waveform," the physical counterpart of a sound.

The special gentleman who brought such changes into the new music was the great Louis Armstrong
Louis Armstrong
Louis Armstrong
1901 - 1971
trumpet
. Satchmo was so entertaining that it is easy to overlook the fact that he was, like Einstein, a genius. He overwrote three centuries of Western music and, using what he heard in his hometown of New Orleans, he created a new musical form that included syncopation, blue notes, growls and many other innovations in the musical vocabulary. He did it so well and consistently that jazz innovators such as Duke Ellington
Duke Ellington
Duke Ellington
1899 - 1974
piano
, Miles Davis, Dexter Gordon
Dexter Gordon
Dexter Gordon
1923 - 1990
sax, tenor
, and Ornette Coleman
Ornette Coleman
Ornette Coleman
b.1930
sax, alto
bowed down to him as the master even as they went beyond him. (It is perhaps no accident that Armstrong and Einstein both had a cosmic sense of humor! They could laugh at the irony of their accomplishments. Both were members of minority ethnic groups who were shunned and belittled by prejudiced men of small minds. They had to laugh to keep their sanity and their perspective on their radical discoveries. In physics and jazz, David, the underdog twice again slew the giant Goliath.)

The revolution in physics that began at the turn of the twentieth century and continues to this day was propelled by two radical theories: relativity and quantum mechanics. Relativity changed the understanding of time and space, matter and energy. Quantum mechanics shattered prevalent ideas about waves and particles and about the micro-world of atomic and subatomic particles. Even the most recent developments such as the big bang and so-called string theory are outgrowths of relativity and quantum theory. Just as it reflects relativity theory, jazz also has several parallels to quantum physics.

God is a Jazz Musician

Quantum physics emerged when it became evident that, like the capricious Greek gods who could at will assume human or spirit form, light could behave as either a wave or a particle. Until then, some scientists believed that light consisted of tiny particles like miniature "golf balls" scattered into space, so that light could be deflected by a lens, or blocked by an opaque object, like a golf ball that moves away from the hole at the last second or gets caught in a sand trap. Others thought that light is like an ocean wave, that spreads out, moves around some objects like a boat, and changes when it encounters waves from another place. Again, Einstein was the spoiler. His discovery of the "photoelectric" effect (the only finding for which he ever won a Nobel Prize, despite the his other earth-shattering theories) showed how light behaved like a particle when its energy was converted to electricity (the basis of the vacuum tube of those old power amplifiers), but like a wave when it went through narrow slits and formed interference patterns like waves that collide. In addition, what was eventually concluded was that light (and other electromagnetic frequencies such as radio waves and X-rays) carries energy in discrete packets or "quanta" called "photons" which cannot be further divided. Quanta have properties of both matter and energy, particles and waves. In this way, and from other findings and theories, quantum physics was born. Many modern devices such transistors and lasers capitalize on quantum physics. More importantly for physicists, we live in a quantum universe in which the smallest, most fundamental units exhibit quantum paradoxes. Our world rests on a foundation of contradiction and caprice that yet somehow is orderly in ways we don't fully comprehend.


comments powered by Disqus