All About Jazz: The web's most comprehensive jazz resource

Serving jazz worldwide since 1995
All About Jazz: The web's most comprehensive jazz resource

What is Jazz?

Jazz Cosmos: Music and Modern Physics

By Published: November 19, 2013
Modern twentieth century physics resulted from inconsistencies in astronomical and subatomic observations (measurements of the largest and smallest) that contradicted Newton's laws of motion. Newton's laws assumed a fixed frame of reference for all observations, a frame which consisted of an invisible substance in space which astronomers called the "ether." Newton's laws, based on the idea of the ether as a fixed frame of reference for all motion, predicted that a change in the speed of light would occur when measured by an observer in motion relative to the ether, like an airplane whose speed is affected by the jet stream. The Michaelson-Morely experiment of 1887, two hundred years after Newton, showed that this was not the case. In their ingenious experiment, it turned out to everyone's surprise that the speed of light was the same regardless of how the light was moving relative to the earth's motion. Newton's laws could not account for this finding. The constancy of the speed of light (relative to any motion of the observer) provided the foundation of Einstein's theory of relativity, which changed the face of physics.

Newton's classical physics was a product of the 17th-18th Century European Enlightenment. (In fact, when critics and scholars refer to "Eurocentric" thought and music, they are really referring to the ideas that congealed during the Enlightenment, when the world was seen as an orderly, permanent creation of a male Caucasian omnipotent God.) Newton's universe was like a God-driven clock where particles of matter moved around like machines. Time and space were believed to be fixed and unchangeable. Motion was totally predictable and accounted for, with no ambiguity, chaos, or shifts of perspective. The universe moved in an orderly course that was immutable and unchangeable, like the grandfather clock that ticked away into the night.

With relativity theory and quantum mechanics, that vision of reality changed forever. In 1905, around the same time that jazz was born, Albert Einstein, a young scientist (who happened to play the violin quite well, and not unlike many young musicians was unrecognized and struggling to earn a living), published his first paper on "special relativity," defying two centuries of Newton's physics by contending, among other things, that time and movement were not fixed like the ether but depended on the observer, He also theorized that energy and matter could be converted into one another (eventually leading to atomic energy). In 1915, when ragtime was in vogue and Louis Armstrong first picked up the trumpet, Einstein went further and held that space was not what it appeared to be, that it could be bent and curved by gravity. Thus, time, space, matter, and energy, instead of being fixed and permanent, could to some degree be "played with" by man and nature, just as jazz musicians improvise around melodies, harmonies, and scales.

Newton/Bach and Einstein/Armstrong: Strange Coincidences

To make a key point (no pun intended) about the connection between music and physics, we have to go back to the development of the piano, which was then called the "fortepiano" because, unlike its predecessor, the harpsichord, it could make both loud and soft sounds. The piano was intended to be a perfect musical machine, the equivalent of the Newtonian clock. To make that happen, Bach and his cohorts developed what we would now think of as the "software," the tuning of the strings that would allow all the key signatures of the chromatic scale to be played with equal value. It was the "well-tempered" scale that you hear very clearly when, say, a jazz pianist like Kenny Barron
Kenny Barron
Kenny Barron
goes up a step or two and plays the melody in a different key. Bach and Newton were roughly contemporaries. The well-tempered chromatic scale, with its fixed, immutable tuning was the musical equivalent of the unchangeable quantities of Newton's Laws. As Newtonian physics depicted a consistent theory of all the phenomena in the universe, the well-tempered scale could accommodate all forms, scales, and key signatures of (Western classical) music, that is, until jazz came along around the same time as Einstein.

Another musical quantity that was as steady of the ticking of a clock was the "beat." In the baroque music of Bach's time, each beat, like clockwork, was equal in emphasis and duration. From the downbeat to the last note, the music ticked off without change. To the modern listener, that way of playing seems a bit stiff, so today's performers of Bach may alter the pace, but not so in his era). A performance in Bach's time had clockwork accuracy, and very beat had equal value.

comments powered by Disqus